
Ticket to a Tar Pit

Jeremy Fitzhardinge
jeremy@goop.org

jeremy.fitzhardinge@citrix.com

Spinlocks are awesome

• Great way to synchronize

• Almost always very low cost

• Straightforward to use

Spinlocks are Awful

• Spinning is a waste of time

• Spinning for no reason is a complete waste

• Why spin for no reason?

Old-style byte locks

• Not fair

• First CPU to check lock wins

• Locking:
while (test_and_set(&lock))

relax();

• Unlocking:
lock = 0;

Ticket Locks

• Guaranteed FIFO granting of lock

• Introduced in 2.6.24

• Basic lock algorithm:
myticket = claim_ticket(&lock);
while (!my_turn(&lock, myticket))

relax();

• Unlock:
grant_ticket(&lock, myticket + 1);

Lockholder Preemption (LHP)
• If a VCPU has no PCPU while holding a lock

everyone else wastes time

• Variation of priority inversion

• Can be annoying source of inefficiency, but not a
box-killer

• Applies to all spinlock implementations

VCPU 0

VCPU 1

2

Lock Claim Scheduling

• Big problem when releasing a lock:
– How to make sure next person gets CPU?
– VCPU scheduler doesn't know

• Can easily get to 90%+ time spent spinning

VCPU 0

VCPU 1

2

3

4

5

Paravirtualizing Spinlocks

• Current approach: completely replace spinlocks

• pv_lock_ops intercepts:
– spin_lock
– spin_unlock

– spin_trylock
– spin_is_locked
– spin_is_contended

Xen PV Spinlocks

• spin_lock: spin for a while, then block on event
channel

• spin_unlock: unlock, then check to see if anyone
blocked
– If so, kick them with an event

– event never delivered; just a blocking poll operation

• Per-VCPU array of who's waiting on what
– Checking = linear scan

• Keep counter of waiters in lock

Downsides of PV Spinlocks

• Adds indirection to all lock operations
– Better than an indirect call, but still an extra call
– Measurable performance hit on some architectures

• Completely new lock implementation
– Old-style lock
– Different characteristics from native lock
– Sleazy hack in relying on same initializer

Paravirtualized Ticket locks

• Leave fast-path of ticketlocks intact

• Only put pv-ops in the slow path
– lock_spinning
– unlock_kick

• Removes a layer of complexity in common code

• Much less per-hypervisor code

Lock Details

– myticket = claim_ticket(&lock);
for (;;) {
int count = THRESHOLD;
do {

if (my_turn(&lock, myticket))
goto out;

relax();
} while(--count);
pv_lock_ops.lock_spinning(&lock, myticket);

}

Unlock details

• next = lock->tail + 1;
grant_ticket(&lock, next);
if (are_waiters(&lock))

unlock_kick(&lock, next);

• Implementing are_waiters()
– Check for any queued lock

• Unchanged lock size, but lots of spurious kicks

– Add “waiters” counter to lock
• Fewer kicks, but increase lock size

Xen PV ticketlocks

• Per-VCPU vars of which lock, and which ticket

• lock_spinning records lock+ticket for VCPU,
blocks on event channel

• unlock_kick scans for matching lock+ticket and
kicks any it finds

Performance

• Very preliminary numbers

• +1 - -2% on native vs no PV ticketlock
– About the same as PV spinlocks

• About the same as PV spinlock under Xen
– Same good properties

• Overall, a bit disappointing

• Still seems like a better approach architecturally

• (What's a useful benchmark?)

Look, A Graph!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

